Computer Rating System Prediction Results for College Football (NCAA IA)

2014 Retrodiction Results

Through
Rank System Pct. Correct Against Spread Absolute Error Bias Mean Square Error games suw sul atsw atsl
1NutShell Combo0.790790.0000011.55420.4336223.36376060115900
2SuperList0.756580.0000012.54720.7683256.46976057518500
3Stat Fox0.760530.0000011.12371.9051192.92876057818200
4Pigskin Index0.765790.0000011.16970.8485199.92576058217800
5Stortrends0.766120.0000011.50450.2327208.12166751115600
6Nutshell Girl0.771050.0000011.80990.6992237.48476058617400
7Ashby AccuRatings0.773680.0000010.93951.7062193.15776058817200
8Covers.com0.778950.0000011.82710.0870224.36976059216800
9Laz Index0.778950.0000010.85800.6309189.53876059216800
10Edward Kambour0.780260.0000010.67161.1649182.11976059316700
11Sonny Moore0.786840.0000011.16380.9848196.18676059816200
12NutShell Sports0.789470.0000011.96730.1682231.62576060016000
13PerformanZ Ratings0.789470.0000011.28910.8602198.88476060016000
14Sagarin Predictive0.789470.0000010.62230.5138179.15276060016000
15Logistic Regression0.834210.0000015.3849-1.7076639.42376063412600
16Born Power Index0.790790.0000010.98841.4090192.65976060115900
17CPA Rankings0.792110.0000010.53700.7913176.04076060215800
18CPA Retro0.793420.0000011.74210.7469229.05176060315700
19Least Squares0.800000.0000010.45060.8218173.85476060815200
20Beck Elo0.802630.0000011.14330.3585199.18576061015000
21system Median0.802630.0000010.64450.7746182.14276061015000
22System Average0.806580.0000010.70800.7210184.02076061314700
23Sagarin0.809210.0000010.55210.5754179.99576061514500
24Massey Concensus Rank0.814470.0000011.02120.9871197.71776061914100
25Payne Power Ratings0.815790.0000011.0928-0.2774195.87676062014000
26Least Squares w/ HFA0.826320.000009.28850.0512135.15176062813200
27Sagarin Elo0.832890.0000011.38970.7004208.56276063312700
* This system does not make predictions.  I make predictions for this
  system by translating it to a new scale that allows for making predictions.



Retrodictive records are found by taking the ratings from the current week
and applying them to the entire season to date.

The ideal system would be one that has the highest correct game decisions,
has the smallest mean error(deviation from the actual game result), and has
a bias of zero.

Mean Error = average[abs(prediction-actual)]

      Bias = agerage(prediction - actual)

      Std. = Standard Deviation of individual game biases