Computer Rating System Prediction Results for College Football (NCAA IA)
2014 Retrodiction Results
Through
Rank |
System |
Pct. Correct |
Against Spread |
Absolute Error |
Bias |
Mean Square Error |
games |
suw |
sul |
atsw |
atsl |
1 | NutShell Combo | 0.79079 | 0.00000 | 11.5542 | 0.4336 | 223.363 | 760 | 601 | 159 | 0 | 0 |
2 | SuperList | 0.75658 | 0.00000 | 12.5472 | 0.7683 | 256.469 | 760 | 575 | 185 | 0 | 0 |
3 | Stat Fox | 0.76053 | 0.00000 | 11.1237 | 1.9051 | 192.928 | 760 | 578 | 182 | 0 | 0 |
4 | Pigskin Index | 0.76579 | 0.00000 | 11.1697 | 0.8485 | 199.925 | 760 | 582 | 178 | 0 | 0 |
5 | Stortrends | 0.76612 | 0.00000 | 11.5045 | 0.2327 | 208.121 | 667 | 511 | 156 | 0 | 0 |
6 | Nutshell Girl | 0.77105 | 0.00000 | 11.8099 | 0.6992 | 237.484 | 760 | 586 | 174 | 0 | 0 |
7 | Ashby AccuRatings | 0.77368 | 0.00000 | 10.9395 | 1.7062 | 193.157 | 760 | 588 | 172 | 0 | 0 |
8 | Covers.com | 0.77895 | 0.00000 | 11.8271 | 0.0870 | 224.369 | 760 | 592 | 168 | 0 | 0 |
9 | Laz Index | 0.77895 | 0.00000 | 10.8580 | 0.6309 | 189.538 | 760 | 592 | 168 | 0 | 0 |
10 | Edward Kambour | 0.78026 | 0.00000 | 10.6716 | 1.1649 | 182.119 | 760 | 593 | 167 | 0 | 0 |
11 | Sonny Moore | 0.78684 | 0.00000 | 11.1638 | 0.9848 | 196.186 | 760 | 598 | 162 | 0 | 0 |
12 | NutShell Sports | 0.78947 | 0.00000 | 11.9673 | 0.1682 | 231.625 | 760 | 600 | 160 | 0 | 0 |
13 | PerformanZ Ratings | 0.78947 | 0.00000 | 11.2891 | 0.8602 | 198.884 | 760 | 600 | 160 | 0 | 0 |
14 | Sagarin Predictive | 0.78947 | 0.00000 | 10.6223 | 0.5138 | 179.152 | 760 | 600 | 160 | 0 | 0 |
15 | Logistic Regression | 0.83421 | 0.00000 | 15.3849 | -1.7076 | 639.423 | 760 | 634 | 126 | 0 | 0 |
16 | Born Power Index | 0.79079 | 0.00000 | 10.9884 | 1.4090 | 192.659 | 760 | 601 | 159 | 0 | 0 |
17 | CPA Rankings | 0.79211 | 0.00000 | 10.5370 | 0.7913 | 176.040 | 760 | 602 | 158 | 0 | 0 |
18 | CPA Retro | 0.79342 | 0.00000 | 11.7421 | 0.7469 | 229.051 | 760 | 603 | 157 | 0 | 0 |
19 | Least Squares | 0.80000 | 0.00000 | 10.4506 | 0.8218 | 173.854 | 760 | 608 | 152 | 0 | 0 |
20 | Beck Elo | 0.80263 | 0.00000 | 11.1433 | 0.3585 | 199.185 | 760 | 610 | 150 | 0 | 0 |
21 | system Median | 0.80263 | 0.00000 | 10.6445 | 0.7746 | 182.142 | 760 | 610 | 150 | 0 | 0 |
22 | System Average | 0.80658 | 0.00000 | 10.7080 | 0.7210 | 184.020 | 760 | 613 | 147 | 0 | 0 |
23 | Sagarin | 0.80921 | 0.00000 | 10.5521 | 0.5754 | 179.995 | 760 | 615 | 145 | 0 | 0 |
24 | Massey Concensus Rank | 0.81447 | 0.00000 | 11.0212 | 0.9871 | 197.717 | 760 | 619 | 141 | 0 | 0 |
25 | Payne Power Ratings | 0.81579 | 0.00000 | 11.0928 | -0.2774 | 195.876 | 760 | 620 | 140 | 0 | 0 |
26 | Least Squares w/ HFA | 0.82632 | 0.00000 | 9.2885 | 0.0512 | 135.151 | 760 | 628 | 132 | 0 | 0 |
27 | Sagarin Elo | 0.83289 | 0.00000 | 11.3897 | 0.7004 | 208.562 | 760 | 633 | 127 | 0 | 0 |
* This system does not make predictions. I make predictions for this
system by translating it to a new scale that allows for making predictions.
Retrodictive records are found by taking the ratings from the current week
and applying them to the entire season to date.
The ideal system would be one that has the highest correct game decisions,
has the smallest mean error(deviation from the actual game result), and has
a bias of zero.
Mean Error = average[abs(prediction-actual)]
Bias = agerage(prediction - actual)
Std. = Standard Deviation of individual game biases