Computer Rating System Prediction Results for College Football (NCAA IA)
2014 Retrodiction Results
Through
Rank |
System |
Pct. Correct |
Against Spread |
Absolute Error |
Bias |
Mean Square Error |
games |
suw |
sul |
atsw |
atsl |
1 | Least Squares w/ HFA | 0.82632 | 0.00000 | 9.2885 | 0.0512 | 135.151 | 760 | 628 | 132 | 0 | 0 |
2 | Least Squares | 0.80000 | 0.00000 | 10.4506 | 0.8218 | 173.854 | 760 | 608 | 152 | 0 | 0 |
3 | CPA Rankings | 0.79211 | 0.00000 | 10.5370 | 0.7913 | 176.040 | 760 | 602 | 158 | 0 | 0 |
4 | Sagarin | 0.80921 | 0.00000 | 10.5521 | 0.5754 | 179.995 | 760 | 615 | 145 | 0 | 0 |
5 | Sagarin Predictive | 0.78947 | 0.00000 | 10.6223 | 0.5138 | 179.152 | 760 | 600 | 160 | 0 | 0 |
6 | system Median | 0.80263 | 0.00000 | 10.6445 | 0.7746 | 182.142 | 760 | 610 | 150 | 0 | 0 |
7 | Edward Kambour | 0.78026 | 0.00000 | 10.6716 | 1.1649 | 182.119 | 760 | 593 | 167 | 0 | 0 |
8 | System Average | 0.80658 | 0.00000 | 10.7080 | 0.7210 | 184.020 | 760 | 613 | 147 | 0 | 0 |
9 | Laz Index | 0.77895 | 0.00000 | 10.8580 | 0.6309 | 189.538 | 760 | 592 | 168 | 0 | 0 |
10 | Ashby AccuRatings | 0.77368 | 0.00000 | 10.9395 | 1.7062 | 193.157 | 760 | 588 | 172 | 0 | 0 |
11 | Born Power Index | 0.79079 | 0.00000 | 10.9884 | 1.4090 | 192.659 | 760 | 601 | 159 | 0 | 0 |
12 | Massey Concensus Rank | 0.81447 | 0.00000 | 11.0212 | 0.9871 | 197.717 | 760 | 619 | 141 | 0 | 0 |
13 | Payne Power Ratings | 0.81579 | 0.00000 | 11.0928 | -0.2774 | 195.876 | 760 | 620 | 140 | 0 | 0 |
14 | Stat Fox | 0.76053 | 0.00000 | 11.1237 | 1.9051 | 192.928 | 760 | 578 | 182 | 0 | 0 |
15 | Beck Elo | 0.80263 | 0.00000 | 11.1433 | 0.3585 | 199.185 | 760 | 610 | 150 | 0 | 0 |
16 | Sonny Moore | 0.78684 | 0.00000 | 11.1638 | 0.9848 | 196.186 | 760 | 598 | 162 | 0 | 0 |
17 | Pigskin Index | 0.76579 | 0.00000 | 11.1697 | 0.8485 | 199.925 | 760 | 582 | 178 | 0 | 0 |
18 | PerformanZ Ratings | 0.78947 | 0.00000 | 11.2891 | 0.8602 | 198.884 | 760 | 600 | 160 | 0 | 0 |
19 | Sagarin Elo | 0.83289 | 0.00000 | 11.3897 | 0.7004 | 208.562 | 760 | 633 | 127 | 0 | 0 |
20 | Stortrends | 0.76612 | 0.00000 | 11.5045 | 0.2327 | 208.121 | 667 | 511 | 156 | 0 | 0 |
21 | NutShell Combo | 0.79079 | 0.00000 | 11.5542 | 0.4336 | 223.363 | 760 | 601 | 159 | 0 | 0 |
22 | CPA Retro | 0.79342 | 0.00000 | 11.7421 | 0.7469 | 229.051 | 760 | 603 | 157 | 0 | 0 |
23 | Nutshell Girl | 0.77105 | 0.00000 | 11.8099 | 0.6992 | 237.484 | 760 | 586 | 174 | 0 | 0 |
24 | Covers.com | 0.77895 | 0.00000 | 11.8271 | 0.0870 | 224.369 | 760 | 592 | 168 | 0 | 0 |
25 | NutShell Sports | 0.78947 | 0.00000 | 11.9673 | 0.1682 | 231.625 | 760 | 600 | 160 | 0 | 0 |
26 | SuperList | 0.75658 | 0.00000 | 12.5472 | 0.7683 | 256.469 | 760 | 575 | 185 | 0 | 0 |
27 | Logistic Regression | 0.83421 | 0.00000 | 15.3849 | -1.7076 | 639.423 | 760 | 634 | 126 | 0 | 0 |
* This system does not make predictions. I make predictions for this
system by translating it to a new scale that allows for making predictions.
Retrodictive records are found by taking the ratings from the current week
and applying them to the entire season to date.
The ideal system would be one that has the highest correct game decisions,
has the smallest mean error(deviation from the actual game result), and has
a bias of zero.
Mean Error = average[abs(prediction-actual)]
Bias = agerage(prediction - actual)
Std. = Standard Deviation of individual game biases