Computer Rating System Prediction Results for College Football (NCAA IA)

2022 Season Totals

Through 2023-01-10
Rank System Pct. Correct Against Spread Absolute Error Bias Mean Square Error games suw sul atsw atsl
1Line (Midweek)0.7203612.05990.5664234.538776559217
2Line (updated)0.715210.4928012.06510.6012233.847776555221171176
3Computer Adjusted Line0.713920.4690312.09210.5844234.884776554222212240
4Pi-Ratings Mean0.711340.4920812.36400.9370246.959776552224373385
5Pi-Rate Ratings0.711340.4921112.43841.0485251.072776552224374386
6Sagarin Ratings0.707470.5065112.4622-0.1380249.689776549227389379
7Line (opening)0.706190.5077912.08050.6617236.294776548228326316
8Dokter Entropy0.703610.4908612.27911.0174243.062776546230376390
9TeamRankings.com0.703610.4789512.39570.2530249.400776546230364396
10ESPN FPI0.703510.5052612.27330.9943244.335769541228384376
11Brent Craig0.703300.4549212.67821.2032256.102728512216328393
12PI-Rate Bias0.702320.4902012.46051.0799251.311776545231375390
13Pigskin Index0.702320.4897112.56571.0377255.484776545231357372
14Donchess Inference0.701030.5218512.45160.4972250.995776544232394361
15Sagarin Recent0.699740.4915312.6528-0.0329257.407776543233377390
16Versus Sports Simulator0.697280.4758212.73390.7699262.842773539234364401
17Massey Ratings0.697160.5319412.4786-0.0418251.724776541235408359
18Dunkel Index0.696480.4963113.07131.2361279.665682475207336341
19Keeper0.695480.5248013.15671.6739279.270775539236402364
20David Harville0.694590.5091412.49660.0855253.125776539237390376
21Born Power Index0.694590.4791713.03841.2843276.156776539237368400
22System Median0.693300.5085912.36080.5109246.750776538238385372
23DP Dwiggins0.692900.4865613.2723-0.9342283.183775537238362382
24Talisman Red0.692010.5234412.92520.2529271.807776537239402366
25Stephen Kerns0.690720.4842913.89670.7545312.164776536240370394
26Stat Fox0.690100.4925212.74492.0602262.238768530238362373
27Sagarin Points0.689430.5039212.5489-0.1454253.307776535241386380
28Laz Index0.688630.5189512.84010.4397263.631774533241397368
29Edward Kambour0.688630.4856412.66170.5814259.395774533241372394
30System Average0.688140.4993512.43380.5424248.770776534242383384
31Payne Power Ratings0.688140.4947912.86810.2151267.004776534242380388
32Daniel Curry Index0.685640.5006513.16720.7610280.958773530243383382
33Linear Regression0.684810.4956512.85461.3205278.097349239110171174
34Waywardtrends0.684280.5110812.77760.8167264.981776531245392375
35Dave Congrove0.684280.5071712.93430.9805267.934776531245389378
36Payne Predict0.684280.4732013.15130.7929278.935776531245362403
37Roundtable0.683400.5029813.04440.5502279.380518354164253250
38Laffaye RWP0.682830.4803913.5330-0.0155291.424722493229343371
39Massey Consensus0.681700.4700513.04111.4341279.200776529247361407
40Sagarin Golden Mean0.680410.5065112.5151-0.0336253.531776528248389379
41Moore Power Ratings0.680000.4817213.1106-0.0252276.591775527248369397
42Catherwood Ratings0.677840.4614313.26681.9858281.530776526250341398
43Beck Elo0.677840.4803713.13710.8316277.478776526250367397
44Howell0.676550.4768413.41240.2463294.056776525251350384
45FEI Projections0.675720.4943312.6622-1.6793261.959626423203305312
46ARGH Power Ratings0.675260.4789113.0938-0.0512276.669776524252352383
47Bihl System0.673170.4815712.86940.7020271.105410276134196211
48PerformanZ Ratings0.666240.4856814.00260.9886310.134776517259373395
49Billingsley0.664520.5026113.43790.1611292.406775515260385381
50Loudsound.org0.664350.5167913.9540-3.3022309.256718477241354331
51Least Squares w/ HFA0.662250.5351214.37191.5603327.602302200102160139
52Payne W/L0.658510.4895613.5289-0.2410295.208776511265375391
53Cleanup Hitter0.648200.4699614.00450.5626310.485776503273352397
54Logistic Regression0.647560.5362314.2849-0.8567362.924349226123185160

* This system does not make predictions.  I make predictions for this
  system by translating it to a new scale that allows for making predictions.



Retrodictive records are found by taking the ratings from the current week
and applying them to the entire season to date.

The ideal system would be one that has the highest correct game decisions,
has the smallest mean error(deviation from the actual game result), and has
a bias of zero.

Mean Error = average[abs(prediction-actual)]

      Bias = agerage(prediction - actual)

      Std. = Standard Deviation of individual game biases