Computer Rating System Prediction Results for College Football (NCAA IA)

2022 Second Half Totals

Through 2023-01-10
Rank System Pct. Correct Against Spread Absolute Error Bias Mean Square Error games suw sul atsw atsl
1Waywardtrends0.668330.5479812.45541.4761263.560401268133217179
2Massey Ratings0.680800.5440812.43260.5710259.567401273128216181
3Talisman Red0.675810.5314912.65890.6449269.413401271130211186
4Stephen Kerns0.685790.5304612.63031.3528267.524401275126209185
5Laz Index0.679200.5304612.52391.1060258.874399271128209185
6PerformanZ Ratings0.665840.5214113.69891.9048305.681401267134207190
7Sagarin Recent0.678300.5214112.44300.3165257.696401272129207190
8Sagarin Points0.665840.5188912.45930.3785255.950401267134206191
9ESPN FPI0.685790.5188912.34181.5017256.291401275126206191
10Donchess Inference0.680800.5216312.38881.2311253.483401273128205188
11David Harville0.678300.5189912.37320.7194258.638401272129205190
12Keeper0.687500.5164612.82922.1349272.116400275125204191
13Sagarin Ratings0.690770.5138512.35370.3741254.033401277124204193
14Billingsley0.673320.5113412.81531.1215277.332401270131203194
15Edward Kambour0.683290.5113412.40240.9204257.449401274127203194
16Daniel Curry Index0.683420.5152312.83510.8798277.612398272126203191
17FEI Projections0.685790.5101512.5154-1.2731260.921401275126201193
18Dave Congrove0.678300.5075812.63511.2525273.307401272129201195
19Dunkel Index0.686870.5127612.80341.4600279.992396272124201191
20System Median0.683290.5089112.28631.0033254.703401274127200193
21Dokter Entropy0.688280.5025312.30291.3881253.666401276125199197
22Payne W/L0.650870.5025313.15450.6977291.661401261140199197
23Massey Consensus0.675810.4987413.02191.7170287.824401271130198199
24Sagarin Golden Mean0.678300.4987412.37470.5489257.745401272129198199
25Laffaye RWP0.678300.4962212.84301.2225277.720401272129197200
26System Average0.678300.4949512.32191.0654255.928401272129196200
27Payne Power Ratings0.673320.4937012.81270.8145277.013401270131196201
28DP Dwiggins0.675000.5118112.8200-0.3600273.570400270130195186
29Versus Sports Simulator0.673320.4911812.71741.0186270.507401270131195202
30Born Power Index0.678300.4886612.77831.4112275.438401272129194203
31Pi-Rate Ratings0.703240.4936112.39471.2003261.324401282119193198
32PI-Rate Bias0.693270.4860812.46671.2967262.545401278123192203
33Pigskin Index0.688280.5092812.58601.1550268.728401276125192185
34Pi-Ratings Mean0.708230.4910012.30651.2143257.356401284117191198
35TeamRankings.com0.690770.4809212.40250.7067258.742401277124189204
36Cleanup Hitter0.620950.4883713.59600.9279298.045401249152189198
37Moore Power Ratings0.670820.4760712.89680.7591277.022401269132189208
38Stat Fox0.675810.4960612.77322.4193275.892401271130189192
39Payne Predict0.673320.4747512.94101.0327283.334401270131188208
40Beck Elo0.675810.4758312.78651.6138278.086401271130187206
41Logistic Regression0.647560.5362314.2849-0.8567362.924349226123185160
42Howell0.680800.4867013.08731.2844287.375401273128183193
43ARGH Power Ratings0.665840.4814812.77310.8953272.858401267134182196
44Catherwood Ratings0.670820.4772112.95512.3965283.654401269132178195
45Loudsound.org0.688570.5365912.7886-1.6800271.466350241109176152
46Brent Craig0.697220.4845912.74961.7930271.689360251109173184
47Linear Regression0.684810.4956512.85461.3205278.097349239110171174
48Line (opening)0.680800.5150612.18580.9214248.344401273128171161
49Bihl System0.688020.4747212.79961.0667268.819359247112169187
50Least Squares w/ HFA0.662250.5351214.37191.5603327.602302200102160139
51Roundtable0.699660.4982512.72700.8498267.25029320588142143
52Computer Adjusted Line0.688280.4978012.17460.9401246.707401276125113114
53Line (updated)0.690770.4879512.16960.9352245.6374012771248185
54Line (Midweek)0.6882812.16580.8865246.572401276125

* This system does not make predictions.  I make predictions for this
  system by translating it to a new scale that allows for making predictions.



Retrodictive records are found by taking the ratings from the current week
and applying them to the entire season to date.

The ideal system would be one that has the highest correct game decisions,
has the smallest mean error(deviation from the actual game result), and has
a bias of zero.

Mean Error = average[abs(prediction-actual)]

      Bias = agerage(prediction - actual)

      Std. = Standard Deviation of individual game biases